

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Column Performance Testing of SuperLig® 639 Resin with Simulated Hanford Waste Supernates: Identification of the Primary Sorbing Species and Detailed Characterization of Their Desorption Profiles

William D. King^a, William A. Spencer^b; L. Larry Hamm^a; Sebastian E. Aleman^a; Cheryl E. Duffey^a; Myra A. Pettis^a

^a Savannah River National Laboratory, Westinghouse Savannah River Company, Aiken, SC, USA

To cite this Article King, William D. , Spencer, William A. , Hamm, L. Larry , Aleman, Sebastian E. , Duffey, Cheryl E. and Pettis, Myra A.(2005) 'Column Performance Testing of SuperLig® 639 Resin with Simulated Hanford Waste Supernates: Identification of the Primary Sorbing Species and Detailed Characterization of Their Desorption Profiles', *Separation Science and Technology*, 40: 1, 383 – 394

To link to this Article: DOI: 10.1081/SS-200042472

URL: <http://dx.doi.org/10.1081/SS-200042472>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Column Performance Testing of SuperLig® 639 Resin with Simulated Hanford Waste Supernates: Identification of the Primary Sorbing Species and Detailed Characterization of Their Desorption Profiles

**William D. King, William A. Spencer, L. Larry Hamm,
Sebastian E. Aleman, Cheryl E. Duffey, and Myra A. Pettis**
Savannah River National Laboratory, Westinghouse Savannah River
Company, Aiken, SC, USA

Abstract: Several benchscale column tests (resin bed volume \leq 75 mL) have been conducted with SuperLig® 639 resin and simulated U.S. Department of Energy tank waste supernates. Rhenium (surrogate for technetium in actual waste samples) breakthrough profiles were determined for three simulant compositions, which are representative of the basic waste categories requiring treatment in the Hanford River Protection Project Waste Treatment Plant. Considerable loading performance variability was observed between the three waste types, although the resin is effective at rhenium removal from each solution. Careful and frequent analysis during elution studies conducted at the conclusion of the column loading tests confirmed that sodium nitrate and sodium perrhenate ion pairs are primary sorbing species on SuperLig® 639 resin. Furthermore, it was discovered that potassium nitrate and potassium perrhenate salts are significant competitors for sorption sites on the resin. Successive desorption profiles were identified for all four salt species during elution tests. Integration of the desorption profiles revealed that the resin is selective for removal of the potassium salts over the sodium salts.

This article is not subject to U.S. copyright law.

Address correspondence to William D. King, Savannah River National Laboratory, Westinghouse Savannah River Company, P.O. Box 616, Aiken, SC 29808, USA.
E-mail: william02.king@srs.gov

BACKGROUND

The Hanford River Protection Project (RPP), funded by the U.S. Department of Energy (DOE), focuses on the design and construction of a Waste Treatment Plant (WTP) for the treatment of millions of gallons of radioactive waste. The waste, which is a legacy by-product of the production of nuclear weapons, is currently stored in tanks at Hanford, Washington. The tanks contain varying amounts and types of solids and millions of gallons of aqueous supernate. While all of the supernate is alkaline and primarily contains dissolved sodium salts, significant compositional variation is observed between tanks. The processing scheme for the Hanford waste therefore requires robust treatment technologies and extensive testing to validate performance under the range of feed solutions and potential operating conditions.

Technetium-99 ($t_{1/2} = 2 \times 10^6$ y) is one of several radioactive species initially targeted for removal from the supernate portion of the Hanford waste. The technetium primarily exists in solution as pertechnetate ion, TcO_4^- . Separation technologies designed for removal of pertechnetate ion from waste solutions and groundwater have included reduction and chemisorption by strongly magnetic iron sulfide material (1), sorption by aqueous biphasic extraction chromatography (2), solvent extraction with crown ethers (3–4), and anion exchange with organic resins (5–9). The technology selected for technetium removal in the Hanford WTP involves the use of SuperLig® 639 resin in a carousel (lead/lag) column configuration with off-line column regeneration. SuperLig® 639 is available in an engineered form that is suitable for use in column configuration, and tests have confirmed acceptable technetium removal performance with this material (10). The resin contains a polystyrene substrate with an attached proprietary organic ligand that is highly selective for pertechnetate ion in alkaline sodium salt solutions. The technetium can be eluted from the resin with water, thus regenerating the material for reuse.

During the course of this work, technetium removal was canceled from the Hanford waste treatment process. This decision was based on the fact that the need for technetium removal was marginal from a regulatory perspective. However, it is possible that technetium removal could return as part of the treatment process, depending on the political environment. In addition, SuperLig® 639 resin is suitable for treatment of radioactive waste solutions at other locations [such as Savannah River Site Waste (11)]. Regardless, it is certainly of interest to further understand a technology such as this, which is so effective at removing a common radioactive component from legacy waste solutions.

INTRODUCTION

Much of the current testing with SuperLig® 639 resin focuses on thoroughly characterizing and optimizing performance. Extensive bench- and pilot-scale

testing has been conducted over the past several years using both actual and simulated Hanford waste solutions. Besides validating resin performance under a variety of potential operating conditions, the tests provide input data for a scale-up model to predict and optimize performance in the full-scale facility. A set of tests was recently conducted to finalize the model input parameters and verify its predictive capabilities. The tests focused on three simulated waste compositions which are representative of the primary Hanford waste types to be treated in the initial operational phase of the Waste Treatment Plant. Two types of tests were conducted using the same pre-treated batch of SuperLig® 639 resin and the same feed solutions: (a) sorption kinetics tests using a specially-designed test apparatus and (b) bench-scale column tests under prototypical plant processing conditions. The sorption kinetics tests were designed to determine fundamental mass transfer coefficients, which serve as primary model input. Specifically, film and pore diffusion coefficients were determined by manipulating the liquid flow rate in a small differential column apparatus (12). A separate paper will describe the sorption kinetics test results and the modeling methodology and output. Results of the column testing are described here.

Column loading tests were conducted with simulants from the three general waste categories (designated as “envelopes”). In the simulant solutions, perrhenate ion is used as a surrogate for pertechnetate ion in the actual waste, since no nonradioactive isotopes of technetium are known. Although the column tests were conducted at constant temperature and volumetric flow rate, significant variation was observed between the rhenium breakthrough profiles of the three waste compositions. The primary factors influencing the breakthrough performance were believed to be the perrhenate concentration, the nitrate: perrhenate molar ratio, and the total solution ionic strength (10). Nitrate is considered to be the primary competitor for sorption sites on the resin and is present in the simulant solutions at concentrations that are orders of magnitude higher than perrhenate ion. The effective capacity of SuperLig® 639 resin has also been shown to increase with the total solution ionic strength (10). This is consistent with the fact that the resin can be eluted with water, where the ionic strength and the resin perrhenate capacity are low.

At the conclusion of each loading test, the feed was displaced from the columns with 0.1 M NaOH, and the columns were eluted with deionized water at 65°C. On-line inductively couple plasma–emission spectroscopy (ICP–ES) analysis of the feed displacement and eluate solutions provided detailed concentration profiles for numerous elements, revealing distinct desorption peaks for several species that were bound to the SuperLig® 639 resin during simulant contact. Examination of the on-line data and additional ion chromatography data from carefully collected samples, provided the first direct evidence that sodium nitrate is a primary competitor for active sites on SuperLig® 639 resin. Furthermore, the potassium salts, KNO_3 and $KReO_4$, were identified as competitor species.

EXPERIMENTAL

A separate report describes the equipment, procedure, analysis, and results for the column testing in detail (13). Note: DOE reports are available through the Office of Scientific and Technical Information—Information Bridge website at <http://www.osti.gov/bridge>.

Simulant Preparation

Categorization of the waste was conducted in the initial stages of the WTP conceptual design based on the anticipated treatment strategies required. Recipes were developed to prepare simulants of Hanford waste tanks 241-AN-105, 241-AZ-102, and 241-AN-107, which are representative of waste envelopes A, B, and C, respectively (14). Consistent with the plant feed target sodium concentration, 5 M Na^+ simulant solutions of each of these waste tanks were prepared for testing. Each simulant solution was stirred overnight, aged for several days, and filtered prior to use. Table 1 provides the chemical composition of each simulant used for testing, based on the reagents added. Analysis data was generally consistent with the expected composition, except for the aluminum concentration, which was lower than the target value. Measured density and viscosity data for each test simulant are also provided in Table 1. The Envelope C simulant was used for precipitation testing prior to ion exchange testing, following the prototypical treatment strategy for this waste type (15). This simulant was exposed to sodium hydroxide, sodium permanganate, and strontium nitrate reagent additions, followed by filtration. The primary compositional changes resulting from these additions involved the sodium, nitrate, and free hydroxide concentrations (measured values: 5.74 M, 2.56 M, and 0.553 M, respectively).

Resin Handling

SuperLig[®] 639 resin (Manufacturer Lot #IR20327022045) was obtained from the vendor, IBC Advanced Technologies, American Fork, UT. The sample contained 30–60 mesh, tan, spherical particles received underwater. The mean particle diameter based on Lasentec chord length analysis was 481 μm (mean-squared chord). Prior to collection of a resin test sample, the 1 gall bottle containing the resin was repeatedly tumbled end over end to promote mixing. A subsample was then collected by repeatedly dipping a 50 mL beaker into the bulk slurry sample to give a final volume of 150 mL. The 1 gall bottle was also tumbled intermittently between dips with the beaker. Prior to use, the bulk of the shipping liquid was decanted from the resin subsample and the resin was washed several times with equal volumes

Table 1. Chemical composition (based on reagents added) and measured physical property data for simulated Hanford tank supernates

	Envelope A AN-105 [M]	Envelope B AZ-102 [M]	Envelope C AN-107 ^a [M]
Na	5.000	5.000	5.000
K	0.090	0.153	0.027
Al	0.687	0.053	0.008
S	0.004	0.325	0.051
P	0.003	0.009	0.007
Cr	0.012	0.037	0.0E 00
Mg	1.04E - 04	6.94E - 05	6.07E - 04
Ca	4.66E - 04	5.08E - 03	1.59E - 03
Sr	0.0E 00	4.34E - 06	4.46E - 05
Ba	0.0E 00	1.08E - 05	3.20E - 05
Cd	1.37E - 05	3.26E - 05	0.0E 00
B	2.21E - 03	1.08E - 05	1.91E - 03
Si	3.51E - 03	3.75E - 02	0.0E 00
Mn	0.0E 00	6.94E - 05	6.01E - 03
Fe	0.0E 00	3.79E - 04	1.79E - 02
Ni	0.0E 00	6.94E - 05	5.32E - 03
Mo	4.00E - 04	1.14E - 03	2.20E - 04
Pb	1.20E - 04	5.43E - 05	0.0E 00
Re ^b	6.27E - 05	2.07E - 04	3.06E - 05
Nitrate	1.243	0.515	2.188
Nitrite	1.126	1.243	0.784
Sulfate	0.004	0.325	0.051
Phosphate	0.003	0.009	0.007
Chloride	0.120	0.013	0.030
Fluoride	0.005	0.101	0.004
Oxalate	3.24E - 03	0.061	0.006
Formate	2.99E - 02	0.0E 00	0.136
Added hydroxide	1.60	0.206	0.012
Carbonate	0.098	0.964	0.825
TIC	0.098	0.964	0.825
TOC	0.140	0.949	1.981
Physical Property Data			
Density (g/mL)	1.234	1.232	1.255
Viscosity (cP) ^c	2.98	3.05	3.37

^aThe AN-107 simulant solution was significantly altered from the original composition during strontium/transuranics precipitation testing. See comments in the Experimental section.

^bMeasured [Re]; assumed to be equivalent to [ReO₄⁻].

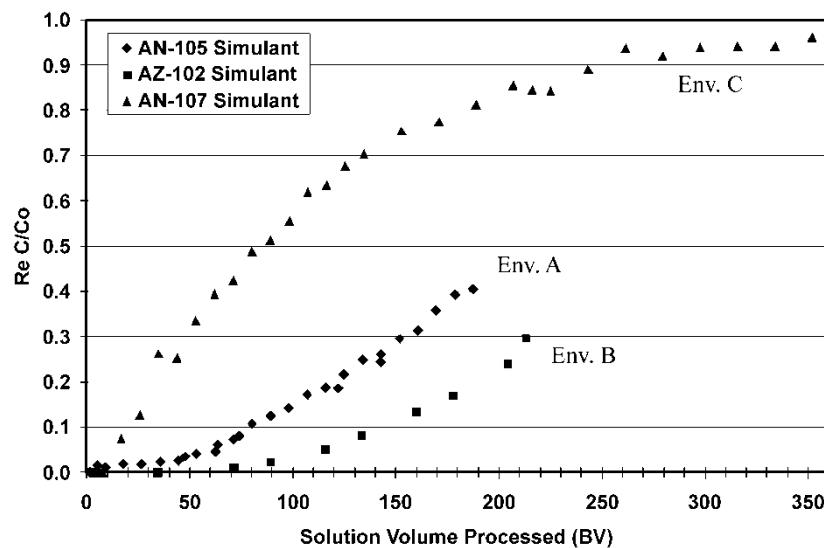
^cViscosity measured at ambient temperature using a Cannon-Fenske viscometer.

of deionized water. The resin was then heated overnight at 65°C in a 10-fold volume excess of water. The bulk of the water was decanted away prior to sample cooling. The sample was then washed several times and stored in water.

Resin samples used for testing were never fully dried prior to use. The entire pretreated resin sample was transferred to a disposable Nalgene Nylon filter unit and the free-flowing liquid was removed from the sample by vacuum filtration. The resin subsample to be used for testing was then quickly collected from the damp material in the filter along with two small (0.1 g) samples for water content determination. Water content was determined by drying these small samples at 50°C under vacuum (-20 in. Hg). The resin test sample was then soaked in 0.25 M NaOH solution (10:1 liquid:solid by volume) overnight prior to being transferred to the column for testing.

Apparatus and Procedure

Jacketed columns were prepared from medium-wall Pyrex glass tubes with inside diameters of 1.5 and 2.54 cm. The basic column design and equipment setup were as reported previously (11). All processing solutions were pumped down-flow through the columns using positive displacement pumps. The column temperature was controlled at $25 \pm 1^\circ\text{C}$ (or 65°C during elution) using a water recirculator. A 1.5 cm ID column containing 10.1 mL (6.3285 g) of resin was used for testing the Envelope A simulant. A 2.54 cm ID column containing 74.6 mL (46.2471 g) of resin was used for testing the Envelope B and C simulants.


The test columns were assembled and filled with 0.25 M NaOH solution. The pretreated resin/NaOH slurries were transferred to the columns in portions with intermittent mixing of the bottle containing the slurry. A packed resin bed was formed by free fall of the beads through the solution. The resin beds were then restrained with quartz wool and glass beads. The beds were preconditioned by passing six bed volumes (BV) of 0.25 M sodium hydroxide solution through the columns over a 6h period. One bed volume was defined as the solution volume equivalent to the volume of the wetted and packed resin bed.

The feed simulant solutions were pumped at a flow rate of 3 BV/hour through the column. The effluent was continually monitored in real time by ICP-ES. The on-line monitor utilized an automated sampling system developed for potential use in the full-scale waste treatment plant (16). Grab samples of the effluent were also collected for anion chromatography analysis. When the available feed was consumed, the loading cycle was terminated. The simulant was displaced from the columns with ~3 BV of 0.1 M sodium hydroxide solution at a flow rate of 3 BV/hour. The columns were then eluted with deionized water at 65°C using a flow rate of 1 BV/hour.

The packed column utilized for testing the Envelope B simulant was reconditioned after elution with 0.25 M NaOH solution, as described above, and was used again for Envelope C simulant testing.

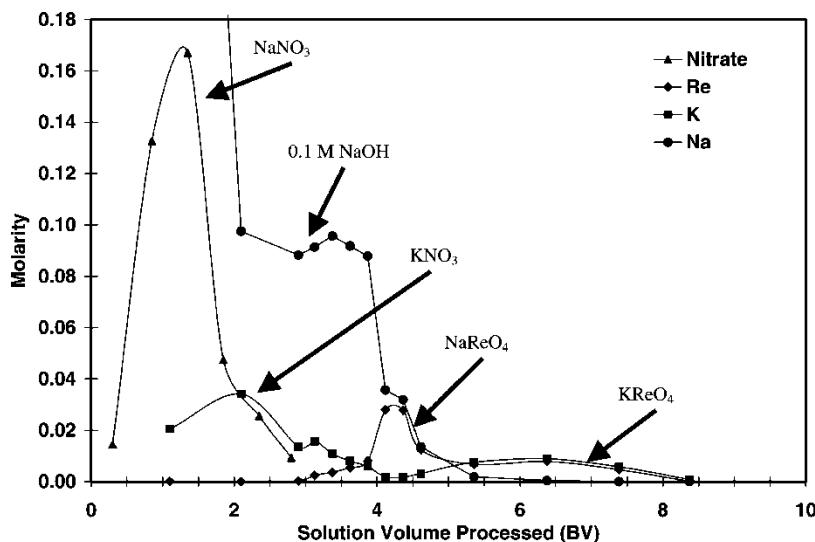
RESULTS AND DISCUSSION

Rhenium column breakthrough profiles obtained for Envelope A, B, and C waste simulants are provided in Fig. 1. SuperLig® 639 resin is effective at removing perrhenate from all three waste types, although the breakthrough profiles vary dramatically. The poorest performance was observed with the Envelope C simulant, for which 50% rhenium breakthrough was observed after processing \sim 80 BV of solution. In contrast, only 30% rhenium breakthrough was observed after processing 210 BV of Envelope B simulant. Intermediate performance was observed with the Envelope A simulant. The trends in performance are consistent with the nitrate:perrhenate mole ratios for these waste types ($\text{NO}_3^-/\text{ReO}_4^-$: Env. C = 8.4 E4 > Env. A = 2.0 E4 > Env. B = 2.5 E3), with lower values corresponding to improved performance. These observations indicate that nitrate ion is the primary competitor for sorption sites on SuperLig® 639 resin. Careful inspection of the concentration profiles for numerous species obtained by on-line analysis at the beginning of column loading with Envelope B simulant revealed a delay in the potassium wave front exiting the column. The 50% potassium breakthrough point

Figure 1. Rhenium breakthrough profiles during column loading with Envelope A, B, and C simulants (25°C, 3 BV/hour).

was observed approximately 1 BV after breakthrough of all other species analyzed (expect for rhenium). A less-pronounced delay in potassium breakthrough was observed with the Envelope A and C simulants. Greater potassium uptake with Envelope B simulant may have resulted from the fact that this simulant contained the highest potassium and rhenium concentrations of the three simulants tested. This was the first indication of potassium uptake by the resin.

At the conclusion of the loading experiments, the simulant was displaced from the columns with 0.1 M NaOH and the columns were eluted with water at 65°C. Nearly complete perrhenate elution was observed prior to processing 10 BV of eluent, indicating very efficient perrhenate recovery at elevated temperature in water. ICP-ES and anion chromatography analysis data collected during the transitional period between column loading and elution revealed that the concentration profiles of certain species did not decrease at the same rate as the majority of the species analyzed. It was apparent after further inspection that several species were desorbing from the resin during feed displacement and during the onset of the elution cycle. Background subtraction of simulant matrix contributions to the concentration profiles based on the trends observed for noninteracting species, revealed successive, partially resolved desorption peaks for four species: NaNO₃, KNO₃, NaReO₄, and KReO₄. The background-corrected desorption profiles for sodium, potassium, rhenium, and nitrate are provided in Fig. 2. The sodium concentration profile depicts the matrix compositional changes from 5 M Na⁺ simulant, to 0.1 M Na⁺ feed displacement solution, and finally to water. Matrix contributions from the 0.1 M NaOH feed displacement solution were not subtracted from the sodium profile.


Based on these observations, the mechanism of technetium removal with SuperLig® 639 resin would be described (in classical chromatography terms) as “reverse phase ion pair partitioning” rather than ion exchange (17). Neutral ion pairs sorb to the active resin sites, although the salts exist predominately in the dissociated form in the mobile solution phase.

L = active resin ligand site; X = Tc or Re

Note: A set of four unique equilibria exist for the various combinations of known competitive ions (Na⁺/K⁺ cations and NO₃⁻/XO₄⁻ anions).

The condition leading to this phenomenon is a solid phase containing neutral ligands with affinity for a soluble cation or anion. Because the solid phase is neutral, the individual ions cannot be removed from solution as charged species, so the ion/counterion pair sorbs to the surface. The mechanism of removal is analogous to that for known crown ethers used in solvent extraction applications, except that the sorbent phase is stationary in

Figure 2. Concentration profiles for selected species during 0.1 M NaOH feed displacement (25°C, 3 BV/hour) and water elution (65°C, 1 BV/hour) after column loading with Envelope B simulant (25 °C, 3 BV/hour).

this case. Certain crown ethers have also been reported to be selective for potassium pertechnetate over sodium pertechnetate (2).

Although the composition, flow rate, and temperature of the mobile phase is changing during the transition from simulant to eluate, it is useful to view the desorption profiles in classical chromatography terms. In this simplified view, the sequence of desorption profiles is representative of the distribution coefficients (K_d) for the various species, with earlier elution corresponding to lower K_d values. Based on the order of elution the distribution coefficients should follow the sequence: $\text{NaNO}_3 < \text{KNO}_3 < \text{NaReO}_4 < \text{KReO}_4$. Loading levels determined for each species on the resin by integration of the desorption profiles indicate that in the solid phase the nitrate and the perrhenate salts are each enriched in potassium (lower Na:K mole ratio) relative to the feed. The eluate is also enriched in perrhenate ion relative to nitrate ion. These observations are consistent with the assigned ordering of the K_d values above.

Another feature of the desorption data is the apparent broadening of the concentration profiles for the potassium salts relative to those observed for the sodium salts. This feature is most notable for the profile associated with potassium perrhenate. A classical explanation for peak broadening is slow sorption/desorption kinetics (18). Alternatively, since the column used with the Envelope B solution was not loaded to rhenium saturation, the relative broadening of the KReO_4 band may be due to differences in the distributions

of the sodium and potassium perrhenate salts on the column during loading. In this case, the two species would experience differing levels of axial dispersion during elution. This would not be the case for the potassium nitrate salt, since the on-line data indicated saturation with this species after processing <5 BV of effluent during column loading. It appears from the data in Fig. 2 that the desorption profile for KNO_3 is also broadened relative to that for the sodium salt, which indicates that slower kinetics for the potassium salts is the reason for the broadening.

Rough estimates of selectivity coefficients between the sodium and potassium salts were obtained from the calculated loading levels for each species on the resin. The selectivity coefficient for KNO_3 over NaNO_3 was determined to be ~ 16 . The selectivity coefficient for KReO_4 over NaReO_4 was determined to be ~ 25 . Based on this information, one would expect improved perrhenate (or pertechnetate) removal performance for SuperLig[®] 639 with higher potassium feeds. Soon after the discovery of the potassium selectivity, enhanced performance was observed for an actual waste sample from Hanford tank 241-AP-101 containing 0.75 M K^+ (19). Details and discussion of the degree of performance enhancement with this sample will be reported separately.

CONCLUSIONS

The performance of SuperLig[®] 639 resin with regard to perrhenate removal from Hanford waste simulants is considered adequate for use of this material in the River Protection Project Waste Treatment Plant. Observed variabilities in loading performance are fairly well understood, especially considering that the resin composition is proprietary and was not provided by the vendor. Resin performance varies with the solution $\text{NO}_3^-:\text{ReO}_4^-$ mole ratio, due to the fact that nitrate is the primary competitor for resin sorption sites. Perrhenate was rapidly eluted from the resin at elevated temperature in water. Careful and frequent analysis during feed displacement and elution of the SuperLig[®] 639 columns confirmed that sodium nitrate and sodium perrhenate salts sorb to the resin during loading with high sodium simulants. Surprisingly, it was also discovered that significant amounts of potassium nitrate and potassium perrhenate salts sorb to the resin as well. Comparison of the relative amounts of each sorbed species to their concentrations in the feed solutions revealed that SuperLig[®] 639 resin is selective for the removal of the potassium salts. Discovery of the potassium selectivity significantly improved understanding of the factors influencing the performance of SuperLig[®] 639 resin. Furthermore, observation of nitrate desorption peaks validated the existing conceptual model for this material. These discoveries speak to the value of frequent and careful analysis of column effluent and eluate solutions.

REFERENCES

1. Watson, J.H.P. and Elwood, D.C. (2003) The Removal of the Pertechnetate Ion and Actinides from Radioactive Waste Streams at Hanford, Washington, USA and Sellafield, Cumbria, UK: The Role of Iron-Sulfide-Containing Adsorbent Materials. *Nucl. Eng. Des.*, 226: 375–378.
2. Bond, A.H., Gula, M.J., Harvey, J.T., Duffey, J.M., Horwitz, E.P., Griffin, S.T., Rogers, R.D., and Collins, J.L. (1999) Flowsheet Feasibility Studies Using ABEC Resins for Removal of Pertechnetate from Nuclear Wastes. *Ind. Eng. Chem. Res.*, 38: 1683–1689.
3. Bonneson, P.V., Moyer, B.A., Presley, D.J., Armstrong, V.S., Haverlock, T.J., Counce, R.M., and Sachleben, R.A. (1996) *Alkaline-Side Extraction of Technetium from Tank Waste Using Crown Ethers and Other Extractants*; ORNL/TM-13241, Oak Ridge National Laboratory: Oak Ridge, TN.
4. Moyer, B.A., Sachleben, R.A., and Bonneson, P.V. Process for Extracting Technetium from Alkaline Solutions. U.S. Patent 5,443,731, August 22, 1995.
5. Bonneson, P.V., Brown, G.M., Alexandratos, S.D., Bavoux, L.B., Presley, D.J., Patel, V., Ober, R., and Moyer, B.A. (2000) Development of Novel Bifunctional Anion-Exchange Resins with Improved Selectivity and Sorptive Kinetics for Pertechnetate: Batch Equilibrium Experiments. *Environ. Sci. Technol.*, 34: 3761–3766.
6. Baohua, G., Brown, G.M., Bonneson, P.V., Liang, L., Moyer, B.A., Ober, R., and Alexandratos, S.D. (2000) Development of Novel Bifunctional Anion-Exchange Resins with Improved Selectivity for Pertechnetate Sorption from Contaminated Groundwater. *Environ. Sci. Technol.*, 34: 1075–1080.
7. Alexandratos, S.D., Brown, G.M., Bonneson, P.V., and Moyer, B.A. Bifunctional Anion Exchange Resins with Improved Selectivity and Exchange Kinetics. U.S. Patent 6,059,975, May 9, 2000.
8. Ashley, K.R., Whitener, G.D., Schroeder, N.M., Ball, J.R., and Radzinski, S.D. (1998) Sorption Behavior of Pertechnetate Ion on Reillex™-HPQ Anion Exchange Resin from Hanford and Melton Valley Tank Waste Simulants and Sodium Hydroxide/Sodium Nitrate Solutions. *Solvent Extr. Ion Exch.*, 16 (3): 843–859.
9. Ashley, K.R., Whitener, G.D., Schroeder, N.M., Ball, J.R., and Radzinski, S.D. (1999) Reillex™-HPQ Anion Exchange Column Chromatography: Removal of Pertechnetate from DSSF-5 Simulant at Various Flow Rates. *Solvent Extr. Ion Exch.*, 17 (6): 1543–1556.
10. Hamm, L.L., Smith, F.G., and McCabe, D.J. (2000) *Preliminary Ion Exchange Modeling for Removal of Technetium from Hanford Waste Using SuperLig® 639 Resin*; WSRC-TR-2000-00305, Westinghouse Savannah River Company: Aiken, SC.
11. King, W.D., Hassan, N.M., McCabe, D.J., and Hamm, L.L. (2003) Technetium Removal from Hanford and Savannah River Site Actual Tank Waste Supernates with SuperLig® 639 Resin. *Sep. Sci. Technol.*, 38 (12–13): 3093–3114.
12. Duffey, C.E., Hamm, L.L., and King, W.D. (2002) *Determination of Perrhenate Adsorption Kinetics from Hanford Waste Simulants using SuperLig® 639 Resin*; WSRC-TR-2002-00548, Westinghouse Savannah River Company: Aiken, SC.
13. King, W.D., Spencer, W.A., and Bussey, M.P. (2003) *Laboratory-Scale SuperLig® 639 Column Tests with Hanford Waste Simulants*; WSRC-TR-2002-00580, Westinghouse Savannah River Company: Aiken, SC.

14. Eibling, R.E. and Nash, C.A. (2001) *Hanford Waste Simulants Created to Support Research and Development on the River Protection Project—Waste Treatment Plant*; WSRC-TR-2000-00338, Westinghouse Savannah River Company: Aiken, SC.
15. Duignan, M.R. (2000) *Pilot-Scale X-Flow Filtration Test—Envelope C Plus Entrained Solids Plus Sr/TRU*; BNF-003-98-0226, Westinghouse Savannah River Company: Aiken, SC.
16. Spencer, W.A., King, W.D., and Pennebaker, F.M. (2003) *Final Report: Technetium Monitor (U) Long Term Runs with ICPES Spectrometer*; WSRC-TR-2002-00447, Westinghouse Savannah River Company: Aiken, SC.
17. Pryde, A. and Gilbert, M.T. (1979) *Applications of High Performance Liquid Chromatography*; Chapman and Hall: London; 48–49.
18. Hamilton, R.J. and Sewell, P.A. (1977) *Introduction to High Performance Liquid Chromatography*; Chapman and Hall: London; 16–19.
19. Burgeson, I.E., Blanchard, D.L., and Deschane, J.R. (2002) *Small Column Testing of SuperLig® 639 for Removal of 99 Tc from Hanford Tank Waste Envelope A (241-AP-101)*; WTP-RPT-030, Battelle—Pacific Northwest Division: Richland, WA.